MENENTUKAN AKAR-AKAR PERSAMAAN KUADRAT : PERSAMAAN KUADRAT & FUNGSI KUADRAT - KELAS 7 - MATEMATIKA - MTs MUHAMMADIYAH 1 MUNTILAN

PENGERTIAN

Persamaan kuadrat adalah suatu persamaan dari variabel yang mempunyai pangkat tertinggi dua. Bentuk umumnya adalah:

 ax^2 + bx + c = 0

Dengan a, b, merupakan koefisien, dan c adalah konstanta, serta  a \neq 0.

Penyelesaian atau pemecahan dari sebuah persamaan ini disebut sebagai akar-akar persamaan kuadrat. Akar-akar merupakan nilai dari variabel x yang memenuhi persamaan tersebut. Ketika nilai tersebut disubstitusikan ke dalam persamaan akan menghasilkan nilai nol.

Akar-akar Persamaan Kuadrat


Secara umum, persamaan kuadrat dibagi menjadi empat, yaitu sebagai berikut.

1. Persamaan Kuadrat Biasa

Persamaan kuadrat biasa adalah persamaan kuadrat yang nilai a = 1. Berikut ini contohnya.

x+ 3x + 2 = 0

2. Persamaan Kuadrat Murni

Persamaan kuadrat murni adalah persamaan kuadrat yang nilai b = 0. Berikut ini contohnya.

x+ 2 = 0

3. Persamaan Kuadrat Tak Lengkap

Persamaan kuadrat tak lengkap adalah persamaan kuadrat yang nilai c = 0. Berikut ini contohnya.

x+ 3x = 0

4. Persamaan Kuadrat Rasional

Persamaan kuadrat rasional adalah persamaan kuadrat yang nilai koefisien dan konstantanya berupa bilangan rasional. Berikut ini contohnya.

4x+ 3x + 2 = 0

Cara Menentukan Akar Persamaan Kuadrat

Ada tiga metode dalam mencari akar-akar persamaan kuadrat ax^2 + bx + c = 0 yaitu:

  1. Pemfaktoran

Metode ini mudah digunakan jika akar-akarnya merupakan bilangan rasional. Berikut ini tabel model persamaan kuadrat (PK) dan berbagai cara pemfaktorannya:

persamaan kuadrat dengan pemfaktoran

Saat menggunakan metode ini, pertama harus mengetahui terlebih dahulu model PK yang akan diselesaikan. Jika model PK sudah diketahui, maka pemfaktoran bisa dilakukan dalam bentuk sesuai dengan yang ada di kolom tabel di atas. Untuk mendapatkan nilai p, q, m dan n kalian harus memahami cara memfaktorkan suatu bilangan.

Contoh Memfaktorkan Persamaan Kuadrat :

Komentar

Postingan populer dari blog ini

Koordinat Kartesius - Posisi Titik Terhadap Titik dan Garis : Kelas VIII Matematika MTs Muhammadiyah 1 Muntilan

Materi Skala dan Perbandingan Kelas 7 SMP

CONTOH SOAL DAN PEMBAHASAN POSISI GARIS TERHADAP GARIS : KOORDINAT KARTESIUS : MATEMATIKA : KELAS VIII : MTs MUHAMMADIYAH 1 MUNTILAN